密封胶厂家
免费服务热线

Free service

hotline

010-00000000
密封胶厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

自动控制系统的设计控制器极点配置方法

发布时间:2020-07-21 18:26:46 阅读: 来源:密封胶厂家

自动控制系统的设计--控制器极点配置方法 前面介绍了利用根轨迹法和频率特性法对系统进行校正。事实上,如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。这种方法称为极点配置法。

例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。

图6-38解:(1)校正前,闭环系统的极点:

> 0

因而控制系统不稳定。

(2)在控制对象前串联一个一阶惯性环节 , c>0,则闭环系统极点:

显然,当 , 时,系统可以稳定。但此对参数 c 的选择依赖于 a 、 b 。因而,可选择控制器 , c 、 d ,则有特征方程:

当 , 时,系统稳定。

本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。

例6-13 已知一单位反馈控制系统的开环传递函数:

要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统 ,闭环主导极点在 处。

解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为:

图6-39为使主导极点向左偏移,宜采用超前校正装置。

(2)令超前校正装置 ,可采用待定系数法确定相关参数:

其中 、 、 、 为待定系数。

进一步可得:

将 代入式子可以得到: , , , 。进一步可得超前校正装置的传递函数:

校正后系统的根轨迹如图6-39所示。

该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。

在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann算法和鲁棒极点配置算法。这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。下面通过示例介绍其中的一种算法。

例6-14 考虑给定的系统,其状态方程模型如下:

期望的闭环系统配置在 , , ,试设计其控制器。

解:可以使用下面的MATLAB语句来实现极点的配置:

A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,11,0]; B=[0;1;0;-1];

eig(A)'

ans =

0 0 pid控制器相关文章:pid控制器原理

09 Shell 流程控制

GitHub 开源库

09 Django 视图函数